

Abstract

The ²²Ne(⁶Li,*t*)²⁵Mg experiment was performed in inverse kinematics using a 7A MeV ²²Ne beam and ⁶LiF target at the Texas A&M University Cyclotron Institute. To better understand (⁶Li,*t*) three particle transfer reaction, measurements of ²⁵Mg, t, and gamma-rays are made in coincidence using a magnetic spectrometer, Si, and Ge detectors. By doing this, the populated states of ²⁵Mg are clearly identified thus enabling an understanding of the reaction selectivity. The angular differential cross sections are then measured to extract the spectroscopic factors. The results of this ${}^{22}Ne({}^{6}Li,t){}^{25}Mg$ analysis are compared with data from other reaction methods and theoretical calculations to improve the knowledge about the ${}^{22}Ne({}^{6}Li,t){}^{25}Mg$ reaction.

Motivation

The (⁶Li,*t*) transfer reaction serves as a powerful tool to study ³He clustering states. Furthermore, for N=Z target nuclei (⁶Li,*t*) and (⁶Li,³He) are expected to populate mirror states [1] in the resulting recoil nuclei, due to the strong ³He + ³H clustering property of ⁶Li [2]. There is also potential to study nuclear structures by three particle transfer [3], e.g., using a radioactive ion beam, which can be a useful method for nuclear astrophysics.

Fig. 1 gives an aerial view of TIARA [4], Multipole-Dipole-Multipole (MDM) spectrometer [5], Oxford detector and Ge detectors. All these instruments analyze the reaction depicted in Fig. 2.

and MDM spectrometer [5].

Figure 2: TIARA detector [4] with a visual of the $^{22}Ne(^{6}Li, t)^{25}Mg$ reaction.

Study of ²²Ne(⁶Li, t)²⁵Mg three particle transfer reaction using TIARA and MDM spectrometer Esha S. Rao^{1,3}

S. Ota¹, G. Christian¹, E. A. Bennett¹, W.N. Catford², S. Dede¹, S. Hallam², J. Hooker¹, C. Hunt¹, H. Jayatissa¹, G. Lotay², M. Moukaddam², A. Matta², C. Magana¹, M. Mouhkaddam², M. Muzek¹, G. Rogachev¹, A. Saastamoinen¹, S. Upadhyayula¹, R. Wilkinson² ¹Cyclotron Institute, Texas A&M University, USA ²University of Surrey, Surrey, UK ³Department of Physics and Astronomy, Rutgers University, USA esha.rao@rutgers.edu

some runs. This is used to gate on (⁶Li,t).

populated states of ²⁵Mg are identified through various gates on Delta E and the x-position of the data. To better distinguish the highest peak from 3.405 MeV (9/2+) and 3.413 MeV (3/2-), an angular distribution plot is compared with theoretical calculations using FRESCO [6] shown in Fig. 7. From Fig. 7, it seems to be that the highest peak corresponds to 3.413 MeV (3/2-). After normalization, the spectroscopic factor is determined to be 0.22 ± 0.04 for this state. This process helps to conclude that other peaks have negative spin parities as well [1,7].

Analysis

Figure 5: ²⁵Mg Excitation Energy vs. Position on Wire 2 of Figure 6: ²⁵Mg Excitation Energy of all runs. This shows the populated states of ²⁵Mg.

Results

theoretical plots J=9/2+ and J=3/2- created by FRESCO [6].

Conclusion

This study provides unique insight to the structure of the states that are populated by ²²Ne(⁶Li,*t*)²⁵Mg. Furthermore, by constructing an angular distribution of the 3.4 MeV state of ²⁵Mg and comparing it to theoretical calculations [6], the spin is extracted along with the spectroscopic factor of 0.22 ± 0.04. It then seems clear that the states being populated by ²⁵Mg have negative spin parities [1,7]. Evidently, future analysis will help to improve knowledge about $^{22}Ne(^{6}Li,t)^{25}Mg$.

Acknowledgements

I would like to thank Professor Greg Christian for giving me the opportunity to work under him this summer and the rest of the TIARA at Texas group for their support and mentorship. A special thanks to Dr. Shuya Ota without whom none of this research would have been possible. This material is based upon work funded by the National Science Foundation under Grant No. 1659847 and Department of Energy under Grant No. DE-FG02-93ER40773.

References

[1] H. G. Bingham et al., Phys. Rev. C 7, 1 (1973) [2] A. Cunsolo et al., Phys. Rev. C 21, 3 (1980) [3] M. L. Avila et al., Phys. Rev. C 97, 014313 (2018)[4] M. Labiche et al., Nuclear Instruments and Method A614 (2010) [5] A. Spiridon et al., Nuclear Instruments and Methods B376 (2016) [6] I. J. Thompson, Computer Physics Report 7, 167 (1988) [7] R. A. Lindgren et al., Physical Review Letters 18, 798 (1972)